Weighted quadrature rules with binomial nodes

نویسندگان

  • M. R. Beyki Department of Mathematics, K. N. Toosi University of Technology, Tehran, Iran
چکیده مقاله:

In this paper, a new class of a weighted quadrature rule is represented as --------------------------------------------  where  is a weight function,  are interpolation nodes,  are the corresponding weight coefficients and denotes the error term. The general form of interpolation nodes are considered as   that  and we obtain the explicit expressions of the coefficients  using the q-binomial theorem. We give an error analysis for the introduced formula and finally we illustrate its application with some numerical examples.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit forms of weighted quadrature rules with geometric nodes

a f (x)w(x) dx = n − k=0 wkf (xk) + Rn+1[f ], where w(x) is a weight function, {xk}k=0 are integration nodes, {wk} n k=0 are the corresponding weight coefficients, and Rn+1[f ] denotes the error term. During the past decades, various kinds of formulae of the above type have been developed. In this paper, we introduce a type of interpolatory quadrature, whose nodes are geometrically distributed ...

متن کامل

Quadrature rules with multiple nodes

In this paper a brief historical survey of the development of quadrature rules with multiple nodes and the maximal algebraic degree of exactness is given. The natural generalization of such rules are quadrature rules with multiple nodes and the maximal degree of exactness in some functional spaces that are different from the space of algebraic polynomial. For that purpose we present a generaliz...

متن کامل

Weighted Quadrature Rules for Finite Element Methods

We discuss the numerical integration of polynomials times exponential weighting functions arising from multiscale finite element computations. The new rules are more accurate than standard quadratures and are better suited to existing codes than formulas computed by symbolic integration. We test our approach in a multiscale finite element method for the 2D reaction-diffusion equation. Standard ...

متن کامل

Quadrature With Respect to Binomial Measures

This work is devoted to the study of integration with respect to binomial measures. We develop interpolation quadrature rules and study their properties. Applying a local error estimate based on null rules, we test two automatic integrators with local quadrature rules that generalize the five points Newton Cotes formula.

متن کامل

A New Approach to the Quadrature Rules with Gaussian Weights and Nodes

To compute integrals on bounded or unbounded intervals we propose a new numerical approach by using weights and nodes of the classical Gauss quadrature rules. An account of the error and the convergence theory is given for the proposed quadrature formulas which have the advantage of reducing the condition number of the linear system arising when applying Nyström methods to solve integral equati...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 4  شماره 15

صفحات  139- 148

تاریخ انتشار 2018-10-23

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023